REGIOSELECTIVE ALKYLATION AND THE RAMBERG-BACKLUND TYPE REACTION OF α -(p-TOLYLSULFONYL)THIANE S,S-DIOXIDE. A NEW ROUTE TO THE SYNTHESIS OF 3-ALKYL-3-CYCLOPENTENONES

Haruo MATSUYAMA,* Yasuyuki MIYAZAWA, and Michio KOBAYASHI
Department of Chemistry, Tokyo Metropolitan University,
Fukazawa, Setagaya-ku, Tokyo 158

A new general olefin synthesis, via regioselective alkylation of α -(p-tolylsulfonyl)thiane S,S-dioxide, 1,4-dioxa-7-p-tolylsulfonyl-8-thiaspiro[4.5]decane 8,8-dioxide, and subsequent Ramberg-Bäcklund type elimination of p-toluenesulfinate and SO₂, is here applied to the synthesis of 3-alkyl-3-cyclopentenones.

The Ramberg-Bäcklund reaction represented one of the first alkene syntheses in which the position of double bond was clearly defined. Recently, we reported a general synthesis of 2-alkyl-3-cyclopentenones via the Ramberg-Bäcklund reaction starting from thian-4-one $(\underline{1})$ as a 5 C synthon. In recent years, there are a few reports on the synthesis of 3-cyclopentenones, although much work has been devoted to preparation of 2-cyclopentenones. In connection with our search of new fragrant compounds, we wish to describe the synthesis of some 3-alkyl-3-cyclopentenones in this paper.

We found that α -alkyl- α -(p-tolylsulfonyl)thiane S,S-dioxides (5) were successfully converted into the corresponding cyclopentenes (6) by the action of NaH-KH in dimethyl sulfoxide (DMSO) in good yields. The key compound 4 was readily prepared according to Scheme 1. 2,3-Dihydrothiin-4-one (2)4) was converted into 1,4-dioxa-7-p-tolylsulfonyl-8-thiaspiro[4.5]decane 8,8-dioxide (4)5) by 1,4-addition of p-toluenesulfinic acid (sodium p-toluenesulfinate, HCl, EtOH; 0 °C \rightarrow room temperature), protection of carbonyl group of 36) (ethylene glycol, p-TsOH (cat.),

 C_6H_6 -reflux), followed by oxidation (m-chloroperbenzoic acid (3 equiv.), CH_2Cl_2 ; 0 °C \rightarrow room temperature). For the regioselective alkylation of $\underline{4}$ with alkyl halides (R-X), two types of procedure were employed: (a) with K_2CO_3 in dry acetone (reflux; "Method A"), and (b) with NaH in N,N-dimethylformamide (DMF) (70 °C; "Method B"). The results are summarized in Table 1, showing that both Method A and Method B gave monoalkylated sulfones $\underline{5}$ in good yields. 7)

Entry	Alkyl halides	Method ^{a)}	<u>5</u>	Mp θ _m /°C	Yield/%
1	CH ₃ -I	A	<u>5a</u>	175.0-175.5	96
2	C6H5CH2-Br	Α	<u>5b</u>	164.0-164.4	88
3	CH ₂ =CH-CH ₂ -Br	Α	<u>5c</u>	150.2-151.4	97
4	с ₅ н ₁₁ -I	В	<u>5d</u>	106.2-108.2	86
5	CH ₃ OC (CH ₂) ₄ CH ₂ -I	В	<u>5e</u>	132.9-134.3	93
6	C6H5CH2CH2-Br	В	<u>5f</u>	168.5-169.5	80

Table 1. Reaction Conditions and Yields in the Conversion of 4 to 5

a) Method A: sulfone $\underline{4}$ (2 mmol), alkyl halide (4 mmol), K_2CO_3 (6 mmol), dry acetone (40 ml), reflux 6-10 h. Method B: sulfone $\underline{4}$ (2 mmol), alkyl halide (4 mmol), NaH (2.5 mmol), dry DMF (20 ml), 70 °C, 20-24 h.

6-Membered sulfones ($\underline{5}$) were transformed into cyclopentenes ($\underline{6}$) by the Ramberg-Bäcklund type reaction (NaH (2.5-3 equiv.) -KH (0.1 equiv.), DMSO, 20-30 °C, 24 h) under nitrogen (Table 2). After cleavage of 1,3-dioxolane of $\underline{6}$ by acid catalyzed de-dioxolanation (p-TsOH·Py (cat.), aq. acetone-reflux), the expected 3-cyclopentenones ($\underline{7}$) were formed as major component (>80%) along with minor amount of 2-cyclopentenone isomer ($\underline{8}$) (by a GLC analysis) (Table 3). The ratio of 3-cyclopentenone/2-cyclopentenone decreased with the increase of the reaction time.

Table 2. Cyclopentene $\underline{6}$ Obtained by the Ramberg-Bäcklund Type Reaction of $\underline{5}$

Entry	Sulfone (<u>5</u>)	Yield of 6/%
1	R= CH ₃	60
2	C5 ^H 11	87
3	C ₆ H ₅ CH ₂ CH ₂	70

Chemistry Letters, 1986 435

Table 3. 3-Cyclopentenone 7 Obtained by Acid-catalyzed De-dioxolanation of 6

Entry	Cyclopentene (<u>6</u>)	Reaction	Yield of	Isomer ratio ^{a)}		
		time/ h	(<u>7</u> + <u>8</u>)/%	7	:	<u>8</u>
1	R= CH ₃	10	50	100	:	0
2	C5 ^H 11	10	94	82	:	18
3	C ₅ H ₁₁	22	92	75	:	25
4	C ₆ H ₅ CH ₂ CH ₂	10	82	85	:	15

a) Determined by GLC.

In a typical experiment, sodium hydride (12.5 mmol; 2.5 equiv.) and potassium hydride (0.5 mmol; 0.1 equiv.) were added to a stirred solution (DMSO, 20 ml) of sulfone $\underline{5d}$ (R= C_5H_{11} ; 5.0 mmol) at room temperature. The reaction mixture was stirred for 24 h at room temperature under nitrogen. The reaction mixture was quenched with ice and water and the product was extracted with pentane (100 ml x 2). The pentane extracts were combined, washed successively with water (50 ml x 5) and brine (50 ml), and dried over sodium sulfate. Filtration and solvent evaporation gave an oil (87%) which was mostly pure cyclopentene $\underline{6d}$ (R= C_5H_{11} ; >94% pure; checked by a GLC analysis). The minor by-product was 3-pentyl-3-cyclopentenone $\underline{7d}$ (6% yield). A solution of an oily $\underline{6d}$ (1.5 mmol) and catalytic pyridinium p-toluenesulfonate (p-TsOH·Py, 38 mg; 0.1 equiv.) in aqueous acetone (10 ml; water: acetone = 1: 4) was refluxed for 10 h and extracted with pentane gave 3-cyclopentenone $\underline{7d}$ (R= C_5H_{11}) and 2-cyclopentenone $\underline{8d}$ (R= C_5H_{11}) (isomer ratio; $\underline{7d}$: $\underline{8d}$ = 82: 18) in 94% yield. Pure $\underline{7d}$ was obtained by preparative TLC on silica gel and /or preparative GLC.

In conclusion, this synthetic approach from $\underline{1}$ to $\underline{7}$ offers several advantages. (i) The starting material $\underline{1}$ and reagents used are readily available; (ii) all operations in the reaction steps $(\underline{4} \rightarrow \underline{5} \rightarrow \underline{6})$ are simple; (iii) the yields are moderate to good.

References

- 1) Review: L. A. Paquette, Org. React., <u>25</u>, Chap. 1 (1977).
- 2) H. Matsuyama, Y. Miyazawa, Y. Takei, and M. Kobayashi, Chem. Lett., 1984, 833.
- 3) Typical procedures for the synthesis of 3-cyclopentenones;
 - a) Cyclization of cis-1,4-dichloro-2-butene with methyl methylthiomethyl sulfoxide; K. Ogura, M. Yamashita, M. Suzuki, S. Furukawa, and G. Tsuchihashi, Bull. Chem. Soc. Jpn., 57, 1637 (1984);

- b) Pd(0) catalyzed reaction of 1,3-diene epoxide; M. Suzuki, Y. Oda, and R. Noyori, J. Am. Chem. Soc., 101, 1623 (1979);
- c) Jones oxidation of cyclopentenol; P. A. Grieco, J. Org. Chem., 37, 2363 (1972);
- d) Thermolysis of vinyl cyclopropane; E. J. Corey and S. W. Walinsky, J. Am. Chem. Soc., 94, 8932 (1972).
- 4) 2: bp 65.3-67.0 °C (4 mmHg); IR (neat) 1650 (C=O), 1550 cm⁻¹; ¹H-NMR (CDCl₃) 62.33-2.97 (2H, m), 3.10-3.47 (2H, m), 6.17 (1H, d, J= 10.5 Hz), 7.45 (1H, d, J= 10.5 Hz); R. J. Batten, J. D. Coyle, and R. J. K. Taylor, Synthesis, 1980, 910.
- 5) $\underline{4}$: mp 216.5-218.2 °C (dec.); IR (KBr) 1335,1300 (SO₂, as) and 1145, 1110 cm⁻¹ (SO₂, s); ${}^{1}\text{H-NMR}$ (CDCl₃) δ 2.00-2.70 (7H, m containing s at 2.47), 3.00-3.40 (2H, m), 4.03 (4H, s), 4.57 (1H, dd, J= 10 and 6 Hz), 7.37 and 7.88 (4H, A₂B₂ m, J= 8 Hz); MS, m/e 346 (M⁺), 347 (M⁺+ 1).
- 6) $\underline{3}$: mp 113.0 °C (dec.); IR (KBr) 1710 (C=O), 1310, 1140 cm⁻¹ (SO₂); 1 H-NMR (CDCl₃) δ 2.47 (3H, s), 2.70-3.10 (5H, m), 3.20-4.00 (1H, m), 4.34 (1H, br t, J= 5.0 Hz), 7.33 and 7.77 (4H, $A_{2}B_{2}$ m, J= 8 Hz); MS, m/e 270 (M⁺), 271 (M⁺+ 1).
- 7) $\underline{5}$: $^{1}\text{H-NMR}$ (CDCl $_{3}$) of $\underline{5}$ (7-alkyl-1,4-dioxa-7-p-tolylsulfonyl-8-thiaspiro[4.5]-decane 8,8-dioxide) shows no peak at $\delta 4.57$ ppm (doublet of doublet; $-\text{SO}_{2}$ -CH-SO $_{2}$ -C $_{6}^{\text{H}}{}_{4}$ -CH $_{3}$ -p) corresponding to compound $\underline{4}$.
- 8) $^{1}\text{H-NMR}$ (CDCl $_{3}$) of cyclopentene $\underline{6}$ (7-alkyl-1,4-dioxaspiro[4.4]non-7-ene) shows a new peak at $\delta 5.20-5.40$ ppm (-CH=C-, multiplet); In the case of $\underline{5c}$ (R= CH $_{2}$ -CH=CH $_{2}$), allylic olefin isomerization of the resulting cyclopentene $\underline{6c}$ was observed under these conditions to give isomer $\underline{6'c}$:

- 9) R. Sterzycki, Synthesis, 1977, 724.
- 10) 3-cyclopentenones $(\underline{7})$: $\underline{7a}$ (R= CH₃): IR (pentane) 1745 cm⁻¹ (C=O); 1 H-NMR (CDCl₃) δ 1.80 (3H, br s), 2.70-3.00 (4H, m), 5.60-5.80 (1H, m); MS, m/e 96 (M⁺). $\underline{7d}$ (R= C₅H₁₁): IR (neat) 1745 cm⁻¹ (C=O); 1 H-NMR (CDCl₃) δ 0.96 (3H, br t), 1.00-1.80 (6H, m), 2.00-2.30 (2H, m), 5.50-5.80 (1H, m); MS, m/e 152 (M⁺). $\underline{7f}$ (R= C₆H₅CH₂CH₂): IR (pentane) 1745 cm⁻¹ (C=O); 1 H-NMR (CDCl₃) δ 2.20-3.10 (8H, m), 5.70 (1H, m), 7.20 (5H, s); MS, m/e 186 (M⁺).
- 11) 2-cyclopentenones (8): 8a (R= CH₃): Hendrickson et al. reported the synthesis of 3-methyl-2-cyclopentenone (8a); J. B. Hendrickson and P. S. Palumbo, J. Org. Chem., $\underline{50}$, 2110 (1985). 8d (R= C_5H_{11}): IR (neat) 1705 (C=O), 1615 cm⁻¹; 1H -NMR (CDCl₃) δ 0.90 (3H, br t, J= 7 Hz), 1.10-1.90 (6H, m), 2.20-2.70 (6H, m), 5.80-6.00 (1H, m); MS, m/e 152 (M⁺). 8f (R= $C_6H_5CH_2CH_2$): IR (CDCl₃) 1700 (C=O), 1670 cm⁻¹; 1H -NMR (CDCl₃) δ 2.20-3.10 (8H, m), 5.93 (1H, m), 7.17 (5H, s); MS, m/e 186 (M⁺).

(Received January 6, 1986)